Two different inward rectifier K+ channels are effectors for transmitter-induced slow excitation in brain neurons.
نویسندگان
چکیده
Substance P (SP) excites large neurons of the nucleus basalis (NB) by inhibiting an inward rectifier K(+) channel (Kir). The properties of the Kir in NB (KirNB) in comparison with the G protein-coupled Kir (GIRK) were investigated. Single-channel recordings with the cell-attached mode showed constitutively active KirNB channels, which were inhibited by SP. When the recording method was changed from the on-cell to the inside-out mode, the channel activity of KirNB remained intact with its constitutive activity unaltered. Application of Gbeta(1gamma2) to inside-out patches induced activity of a second type of Kir (GIRK). Application of Gbeta(1gamma2), however, did not change the KirNB activity. Sequestering Gbeta(1gamma2) with Galpha(i2) abolished the GIRK activity, whereas the KirNB activity was not affected. The mean open time of KirNB channels (1.1 ms) was almost the same as that of GIRKs. The unitary conductance of KirNB was 23 pS (155 mM [K(+)](o)), whereas that of the GIRK was larger (32-39 pS). The results indicate that KirNB is different from GIRKs and from any of the classical Kirs (IRKs). Whole-cell current recordings revealed that application of muscarine to NB neurons induced a GIRK current, and this GIRK current was also inhibited by SP. Thus, SP inhibits both KirNB and GIRKs. We conclude that the excitatory transmitter SP has two types of Kirs as its effectors: the constitutively active, Gbetagamma-independent KirNB channel and the Gbetagamma-dependent GIRK.
منابع مشابه
Activation of Inward Rectifier Potassium Channels in High Salt Impairment of Hydrogen Sulfide-Induced Aortic Relaxation in Rats
Introduction: Hydrogen sulfide (H2S) plays a key role in the regulation of vascular tone and protection of blood vessels against endothelial dysfunction. Since the mechanism of salt impairing H2S-induced vascular relaxation is not fully clear, therefore this study was designed to investigate the role of potassium (K+) channels in the vasodilatory effects of exogenous H2S in rat aortic rings.&nb...
متن کاملAn inward current induced by a putative cyclic nucleotide-gated channel in rat cerebellar Purkinje neurons
The roles of cyclic nucleotide-gated (CNG) channels in sensory transduction have long been recognized. More recent studies found that CNG channels are distributed in multiple brain regions involved in memory and learning, including the cortex, hippocampus and cerebellum. These findings suggest that their functions are not limited to sensory perception, but also to neuronal plasticity phenomena,...
متن کاملAn inward current induced by a putative cyclic nucleotide-gated channel in rat cerebellar Purkinje neurons
The roles of cyclic nucleotide-gated (CNG) channels in sensory transduction have long been recognized. More recent studies found that CNG channels are distributed in multiple brain regions involved in memory and learning, including the cortex, hippocampus and cerebellum. These findings suggest that their functions are not limited to sensory perception, but also to neuronal plasticity phenomena,...
متن کاملOrexin (hypocretin) effects on constitutively active inward rectifier K+ channels in cultured nucleus basalis neurons.
Orexins are excitatory transmitters implicated in sleep disorders. Because orexins were discovered only recently, their ionic and signal transduction mechanisms have not been well clarified. We recently reported that orexin A (OXA) inhibits G protein-coupled inward rectifier K+ (GIRK) channels in cultured locus coeruleus and nucleus tuberomammillaris neurons. Other work in our laboratory reveal...
متن کاملEthanol excitation of dopaminergic ventral tegmental area neurons is blocked by quinidine.
The dopaminergic (DA) neurons in the ventral tegmental area (VTA) are important for the reinforcing effects of ethanol. We have shown that ethanol directly excites DA VTA neurons and reduces the afterhyperpolarization (AHP) that follows spontaneous action potentials in these neurons. These data suggested that ethanol may be increasing the firing rate of DA VTA neurons by modulating currents tha...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Proceedings of the National Academy of Sciences of the United States of America
دوره 99 22 شماره
صفحات -
تاریخ انتشار 2002